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Configuration Systems

• Configuration systems are tools that help users to 

generate matching solutions (e.g., items or services) 

which satisfy all pre-defined constraints [1, 8, 13, 14]

• Set of constraints:
• user’s preferences (user constraints)

• given knowledge base (background knowledge constraints)



Martin Stettinger

Institute of Software Technology

4

User Preference Elicitation

• Traditional approach:
• Active querying of user preferences in online sessions [5]

(Preference elicitation dialogs)

• Dialogs involve diligent questioning as all user constraints must be 

collected in order to consider all user needs

• Known issues
• Time-consuming process (high user interaction)

• Dialogs consist of many multiple-choice questions related to the 

respective configuration domain / task

 There is a need to tackle these challenges
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Contribution

• Recommender system
• Based on collaborative filtering

• Facilitate the preference elicitation process

• Major objective:
• Address user-related cold-start problem

• Reduce user interaction efforts
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• Collaborative-filtering recommendation approach:
• Supports preference elicitation dialogs with multiple-choice questions

• Well-suited for online configuration environments

• Our Approach:
 Analyze historic dialog sessions and order questions based on 

information gain

 Ask the current user N selected questions (i.e., sequence that reduces 

the number of questions at lowest loss of prediction quality)

 After each question (answered by current user):

 Find k nearest neighbours (collaborative filtering with cosine-similarity)

 If answers given by nearest neighbours (NN) are very similar (lower than a 

threshold ⍺)  recommend majority answer (of NN)

 Otherwise, repeat and ask next question

Technical Approach
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Evaluation

• Evaluation with two real-world datasets
• Comparison with baseline (standard collaborative filtering)

• 80% training, 20% test

• 10-fold cross-validation with grid search (best hyperparameters for 

k and threshold ⍺)

• First dataset (DS-A):

• More samples (125 sessions)

• Shorter dialogs (20 questions)

• Simple configuration scenario (smaller amount of user constraints)

• Second dataset (DS-B):

• Fewer samples (32 sessions)

• Longer dialogs (78 questions)

• Complex configuration scenario (large amount of user constraints)
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Evaluation (DS-A)

Evaluation results achieved on first dataset:

• High prediction accuracy from the very beginning

• High user coverage: for >30% users, dialogs can be completed with high accuracy after 20% questions

• High accuracy: accuracy always remains stable >0.88

• Our approach significantly outperforms the baseline (basic CF):

• User coverage is much higher

• Average prediction accuracy is significantly higher as well



Martin Stettinger

Institute of Software Technology

9

Evaluation (DS-B)

Evaluation results achieved on second dataset:

• More challenging scenario (complex configuration scenario):

• Sparse data (few sessions/records for training)

• Many questions

• High prediction accuracy after 50% of questions:

• High user coverage: for >55% users, dialogs can be completed with high accuracy

• High accuracy: accuracy significantly outperforms baseline (basic CF)

• Our approach significantly outperforms baseline once again:

• User coverage is much higher

• Average prediction accuracy is noticeably higher
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Future Work

• Further investigations and studies 
• existing approach as well as new approaches

• Support of system constraints (background knowledge)
• Disallow certain answers in online session

(e.g., electricalDrive = YES ∧ gearbox = MANUAL)

• Avoid inconsistencies, i.e., include domain knowledge into machine learning

• Ongoing: apply approach in other domains (e.g., 

questionnaires, exams)
• Less but more qualitative answers (participants start to lose concentration 

after some time when many questions have to be answered)

• More participants are willing to participate in short surveys (few questions) 

rather than long surveys (many questions)

• Precise forecast of personal opinions related to societal / political / 

economic topics
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Conclusion

• Development of a recommendation approach to:
• complete an active configuration session by inferring remaining 

preferences from historic dialogs of like-minded users

• facilitate dialog-based preference elicitation

• Evaluation with two small real-world datasets shows

that our approach:
• Achieves high prediction accuracy and user coverage early in the 

elicitation process

• Is able to guide new users through long dialog-based preference 

elicitation sessions

• Is suitable for most complex configuration scenarios which involve 

an extensive variety of variables
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THANK YOU!

Questions?
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