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Configuration Systems

« Configuration systems are tools that help users to
generate matching solutions (e.g., items or services)
which satisfy all pre-defined constraints [1, 8, 13, 14]

 Set of constraints:

* user’s preferences (user constraints)
» given knowledge base (background knowledge constraints)

. Martin Stettinger
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User Preference Elicitation

« Traditional approach:

« Active querying of user preferences in online sessions [5]
(Preference elicitation dialogs)

« Dialogs involve diligent questioning as all user constraints must be
collected in order to consider all user needs

« Known issues
« Time-consuming process (high user interaction)

« Dialogs consist of many multiple-choice questions related to the
respective configuration domain / task

» There is a need to tackle these challenges

. Martin Stettinger
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Contribution

« Recommender system
« Based on collaborative filtering
» Facilitate the preference elicitation process

* Major objective:
» Address user-related cold-start problem
* Reduce user interaction efforts

. Martin Stettinger
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Technical Approach

« Collaborative-filtering recommendation approach:
« Supports preference elicitation dialogs with multiple-choice questions
« Well-suited for online configuration environments

* Our Approach:

» Analyze historic dialog sessions and order questions based on
information gain

» Ask the current user N selected gquestions (i.e., sequence that reduces
the number of questions at lowest loss of prediction quality)
» After each question (answered by current user):
» Find k nearest neighbours (collaborative filtering with cosine-similarity)

» If answers given by nearest neighbours (NN) are very similar (lower than a
threshold a) - recommend majority answer (of NN)

» Otherwise, repeat and ask next question

. Martin Stettinger 7
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Evaluation

 Evaluation with two real-world datasets

Comparison with baseline (standard collaborative filtering)
80% training, 20% test

10-fold cross-validation with grid search (best hyperparameters for
k and threshold a)

First dataset (DS-A):
* More samples (125 sessions)
« Shorter dialogs (20 questions)
« Simple configuration scenario (smaller amount of user constraints)

Second dataset (DS-B):
« Fewer samples (32 sessions)
» Longer dialogs (78 questions)
« Complex configuration scenario (large amount of user constraints)

. Martin Stettinger




Ty,

Institute of Software Technology

Evaluation (DS=A)

Pre-answered questions User coverage Avg. Accuracy (answer combinations)
pproach | Baseline || Approach Baseline
4 (20%) 32% 5.22% 0.945 0.908
5 (25%) 36% 8.26% 0.914 0.894
6 (30%) 48% 11.02% 0.882 0.888
7 (35%) 64% 13.92% 0.888 0.884
8 (40%) 64% 17.00% 0.888 0.882
9 (45%) 68% 19.99% 0.884 0.875
10 (50%) 72% 23.23% 0.890 0.873
11 (55%) 72% 26.26% 0.890 0.869
12 (60%) 76% 29.30% 0.896 0.865
13 (65%) 84% 32.96% 0.885 0.862
14 (70%) 84% 36.36% 0.885 0.861
15 (75%) 84% 40.58% 0.885 0.857
16 (80%) 84% 45.45% 0.885 0.855
17 (85%) 84% 50.77% 0.885 0.856
18 (90%) 88% 58.74% 0.891 0.858
19 (95%) 88% 70.31% 0.891 0.860

Evaluation results achieved on first dataset:

* High prediction accuracy from the very beginning
* High user coverage: for >30% users, dialogs can be completed with high accuracy after 20% questions
* High accuracy: accuracy always remains stable >0.88

» Our approach significantly outperforms the baseline (basic CF):
» User coverage is much higher
» Average prediction accuracy is significantly higher as well

. Martin Stettinger
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Evaluation (HEEE)

Pre-answered questions User coverage Avg. Accuracy (answer combinations)
Baseline §| Approach Baseline
39 (50%) 57.14% 1.64% 0.981 0.840
43 (55%) 71.43% 2.87% 0.985 0.843
47 (60%) 71.43% 4.00% 0.985 0.846
51 (65%) 71.43% 541% 0.985 0.851
55 (70%) 85.71% 7.24% 0.981 0.851
58 (75%) 85.71% 8.77% 0.981 0.852
63 (80%) 85.71% 11.79% 0.981 0.855
66 (85%) 85.71% 14.33% 0.981 0.856
70 (90%) 85.71% 18.97% 0.981 0.860

74 (95%) 100.0% 28.50% 0.912 0.863

Evaluation results achieved on second dataset:

* More challenging scenario (complex configuration scenario):
+ Sparse data (few sessions/records for training)
* Many questions

* High prediction accuracy after 50% of questions:
« High user coverage: for >55% users, dialogs can be completed with high accuracy
» High accuracy: accuracy significantly outperforms baseline (basic CF)

» Our approach significantly outperforms baseline once again:
» User coverage is much higher
» Average prediction accuracy is noticeably higher

. Martin Stettinger
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Future Work

« Further investigations and studies
« existing approach as well as new approaches

e Support of system constraints (background knowledge)

 Disallow certain answers in online session
(e.g., electricalDrive = YES A gearbox = MANUAL)

« Avoid inconsistencies, i.e., include domain knowledge into machine learning
« Ongoing: apply approach in other domains (e.g.,
guestionnaires, exams)

» Less but more qualitative answers (participants start to lose concentration
after some time when many questions have to be answered)

» More participants are willing to participate in short surveys (few questions)
rather than long surveys (many questions)

» Precise forecast of personal opinions related to societal / political /
economic topics

. Martin Stettinger
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Conclusion

« Development of a recommendation approach to:

complete an active configuration session by inferring remaining
preferences from historic dialogs of like-minded users

facilitate dialog-based preference elicitation

 Evaluation with two small real-world datasets shows
that our approach:

Achieves high prediction accuracy and user coverage early in the
elicitation process

Is able to guide new users through long dialog-based preference
elicitation sessions

|s suitable for most complex configuration scenarios which involve
an extensive variety of variables

. Martin Stettinger
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HANK YOU!

Questions?

. Martin Stettinger
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