A
>
wn

\
"\ \3} JAVMLA0S

Fast Approximate Calculation of Valid Domains in a Satisfiability-based Product Configurator

Johannes Werner, Tomas Balyo, Markus Iser, Michael Klein

= Components of a Product Configurator
1. Configuration Process
2. Knowledge representation

= Configuration Process

= |nteractive product configurator
= CAS Merlin

= Knowledge representation
= Product knowledge is a set of boolean clauses

= SAT solver prooves the validity of a
configuration

Johannes Werner | CAS Software AG Copyright ©2020 | Alle Rechte vorbehalten.

Motivation — Remaining valid choices

= Remaining valid choices " Valid domain

= Domain:
= Guidance through the configuration process = Battery {1000,3000,4000)
= Decreases configuration time = Valid Domain:

= Battery {3000,4000}

. %
Media Camera
MP3
] : .
Screen . High resolution v
*
Battery Please select -
3000 mAh
4000 mAh

Johannes Werner | CAS Software AG Copyright ©2020 | Alle Rechte vorbehalten.

Motivation — Automatic conflict resolution

= Automatic conflict resolution
= Reduce unnecessary user interactions
= Further decreases configuration time
= User intent should not be distorted

= Max-One constraint conflict
= Domain with a max-one constraint
= User selects a second value = conflict

= Max-One constraint conflict resolution
= User wants to change his selection, not select a second value
= Configurator removes first value from the configuration before adding the second one

Johannes Werner | CAS Software AG Copyright ©2020 | Alle Rechte vorbehalten.

Motivation — Valid domains and conflict resolution

= Valid domain with max-one constraint
= No other constraints
= Valid Battery domain: @

=
Battery

3000 mah

3000 mah

= \alid domain with max-one constraint conflict resolution

= No other constraints
= Valid Battery domain: {4000 mAh}

Johannes Werner | CAS Software AG

]
Battery

3000 mAh

3000 mAh

4000 mAh

Copyright ©2020 | Alle Rechte vorbehalten.

Motivation — Fast user assistance

= Interactive product configurator
= User assistance after every user decision
= Response time should be low

= Valid domains
= NP hard [1]

s SAT for each domain value in each domain
= Considering conflict resolution

- Approximate valid domains

Johannes Werner | CAS Software AG Copyright ©2020 | Alle Rechte vorbehalten.

Approximating invalid domains

= Valid domain
= Subset of the original domain which contains only values which are consistent

= |nvalid domain
= Subset of the original domain which contains only values which are inconsistent

= Under-approximating an invalid domain
= All contained values are invalid
= Contains only a subset of all invalid domain values
= - Complete but not backtrack-free configurator

Johannes Werner | CAS Software AG Copyright ©2020 | Alle Rechte vorbehalten.

Product Model

= Product model is transformed into a set
of boolean clauses

= User decisions are transformed into an
initial variable assignment

= User decisions can be used to perform
unit propagation on the product model

Unit propagation (UP)
Given an initial variable assignment, UP

calculates directly implied variable
assignments.

Johannes Werner | CAS Software AG

W |

W |

W |

| Media <Mandatory, Multiple selection=

EEJ Carnera
£ MP3

| Screen <Mandatory, Single selection»

£ Basic
@ Color
£ High resolution

| Battery <Mandatory, Single selection=

9 1000 mAh
£ 3000 mAh
9 4000 mAh

Copyright ©2020 | Alle Rechte vorbehalten.

Approximating invalid domains — Step 1

Input: All user decisions

Perform UP on the product model using all user decisions as the initial assignment

Screen EEI“EF}" . i
High resolution ~ 1000 mAh nvalid domains
Battery > 7 4000 mAR Battery Screen Media
3000 mAh S:ree_n 1000 mAh Basic @
Media : gaf”: 4000 mAh Color
Camera olar

Output: All negativly implied values form the invalid domains = Max-one constraint conflicts
are not considered

Johannes Werner | CAS Software AG Copyright ©2020 | Alle Rechte vorbehalten.

Approximating invalid domains — Step 2

Input: Invalid domain values which belong to a domain with a
max-one constraint
Invalid domains
= Specifically ask (example)
= Has ,3000 mAh” to be part of the initial assigment for ,1000
mAh" to be invalid? 1000 mAh Basic

= NO (,High resolution” =, = 1000 mAh") 4000 mAh Color

= Has ,3000 mAh” to be part of the initial assigment for ,4000
mAh” to be invalid?

= YES

Battery Screen

Johannes Werner | CAS Software AG Copyright ©2020 | Alle Rechte vorbehalten. 10

Approximating invalid domains — Step 2

= Depth-first search in a full implication graph
= |s built during UP in step 1
= Contains all possible implications of a literal during UP
= |s propagation order independent

Battery: Screen:
3000 mAh High resolution
Battery: Battery: Screen: Screen:
= 4000 mAR — 1000 mAh 7 Basic ~ Colar

Johannes Werner | CAS Software AG Copyright ©2020 | Alle Rechte vorbehalten.

11

Approximating invalid domains — Step 2

(TR U

Input: literal k, user decision to check [

if k is user decision then

if k # [then
L return false

foreach C € Predecessors(k) do
isNotRequired = true

foreach j € C do

if isRequiredUserDecision(j,l) = true then
isNotRequired = false
break

if isNotRequired then
return false

Is frequired for 7a to be 12 return true

implied?

Johannes Werner | CAS Software AG

Copyright ©2020 | Alle Rechte vorbehalten.

12

Approximating invalid domains — Final result

1. Take invalid domains from unit propagation Invalid domains

in step 1
= Battery: {1000 mAh, 4000 mAh} Battery Screen Media
= Screen: {Basic, Color} 1000 mAh @ @

2. Apply the results from step 2
= 1000 mAh: one PI without ,3000 mAh"”

= 4000 mAh: no Pl without ,3000 mAR” Battery 3000 mah

= Basic, Color: no Pl without ,High resolution”

3000 mAh

4000 mAh

Johannes Werner | CAS Software AG Copyright ©2020 | Alle Rechte vorbehalten. 13

Run time measurements

= Tested on self generated feature models
= Tool for generation provided on http://www.splot-research.org/

= Generated model has 10,000 features
= 2,500 features belong to a domain with a max-one constraint

= 1,000 randomly selected features per model
= Run time measured after every second selected feature

Johannes Werner | CAS Software AG Copyright ©2020 | Alle Rechte vorbehalten.

14

Time (ms)

Run time measurements

350
RRL ——

Merlin

= Run time 1,000 selected features:
= Naive: 309ms

| = Merlin: 169ms
= RRL: 9ms

300 - SAT Online .

200 —

= Speedup relative to Merlin
= 94%

150 -

100 | -

50 -

0 " I I I
0 200 400 600 800 1000

asserted features

Johannes Werner | CAS Software AG Copyright ©2020 | Alle Rechte vorbehalten. 15

Time complexity

= Has exponential worst case time complexity
= All possible paths have to be searched in the full implication graph

= Exponential time cannot be observed in the measurements

= Optimizations in the algorithm
= Assumption: Structure of the full implication graph keeps the search easy

Johannes Werner | CAS Software AG Copyright ©2020 | Alle Rechte vorbehalten.

16

= (alculating valid domains is an important feature of an interactive product
configurator

= Automatically resolving max-one constraint conflicts affects the calculation of valid
domains

= (alculating valid domains is NP hard and thus have to be approximated

= Under-approximating invalid domains can be done by searching the full implication
graph

= The run time measurements suggest that our algorithm outperforms the algorithm
currently implemented in Merlin

Johannes Werner | CAS Software AG Copyright ©2020 | Alle Rechte vorbehalten. 17

References

[1] Hadzic, Andersen, ,An introduction to solving interactive configuration problems”, 2004

Johannes Werner | CAS Software AG Copyright ©2020 | Alle Rechte vorbehalten.

18

	Slide Number 1
	Motivation
	Motivation – Remaining valid choices
	Motivation – Automatic conflict resolution
	Motivation – Valid domains and conflict resolution
	Motivation – Fast user assistance
	Approximating invalid domains
	Product Model
	Approximating invalid domains – Step 1
	Approximating invalid domains – Step 2
	Approximating invalid domains – Step 2
	Approximating invalid domains – Step 2
	Approximating invalid domains – Final result
	Run time measurements
	Run time measurements
	Time complexity
	Summary
	References

